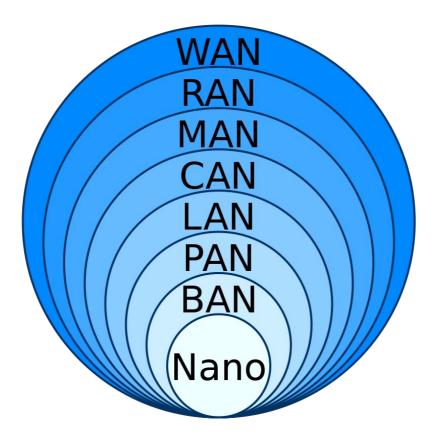
Wireless Networking


Outline

- Computer network types
- Enterprise Wi-Fi network
- Devices in a Wi-Fi network
- Access Points
- WLAN controllers
- WLAN Modes
- Wi-Fi standards
- Wi-Fi security
- Wireless Mesh Networking
- Wireless communication issues and mitigation techniques

Computer Network Types (Wired or Wireless)

A wireless network is a computer network that uses wireless data connections between network nodes.

Computer Network Types - PAN

- PAN Personal Area Network
 - A personal area network (PAN) is a computer network for interconnecting electronic devices within an individual person's workspace
- Laptops, mobiles, computer accessories, wearable devices
- Low powered and short distance wireless
- Wired or Wireless (WPAN)
- Technologies
 - > IrDA, Wireless USB, Bluetooth, NearLink, Zigbee

Computer Network Types - LAN

- LAN Local Area Network
 - A local area network (LAN) is a network that connects computers and devices in a limited geographical area such as a home, school, office building, or closely positioned group of buildings.
- LAN Technologies/Standards
 - ➢ Ethernet, Wi-Fi (WLAN)
 - > Obsolete Token-Ring, Token-Bus, AppleTalk
- Area like < 1km</p>

Computer Network Types - LAN

- Components in a LAN
 - > Devices
 - Computers, Servers, Printers, Scanners etc
 - > Networking Devices
 - Routers, Switches, Hubs, Access Points, Wireless Controllers etc.
 - > Transmission Media
 - Cables, Wireless

Computer Network Types - CAN

- CAN Campus Area Network
 - ➤ a campus area network (CAN) is a computer network that connects multiple LANs within a an educational or corporate campus.
- interconnect multiple LANs
 - Computers, Servers, Printers, Scanners etc
- High speed links 10,40,100 Gbits
- Expensive/high capacity equipment than LANs
- Might use own fiber
- Area like 1km 5km

Computer Network Types - MAN

- MAN Metropolitan Area Network
 - Is a computer network that interconnects users with computer resources in a geographic region of the size of a metropolitan area
- Connects multiple LANs within a an large city or similar larger area.
- High bandwidth
- Scalable design

- High reliability through redundant systems
- Might use ISP leased dark fiber
- Area is larger than CAN and smaller than WAN
- Not necessarily urban
- Wireless MAN (WMAN) two types
 - backhaul cellular network backbone (Ex: WiMAX)
 - \succ last mile provide connection to a remote site

Computer Network Types - WAN

- WAN Wide Area Network
 - Is a telecommunications network that extends over a large geographic area.
- connects LANs or other types of networks over a region, country or world
- Protocols/technologies: SONET/SDH, MPLS, ATM, Frame Relay
- Use leased lines or own fiber
- high propagation delay
- high network congestion
- Internet is WAN
- Wireless WAN
 - ➤ 3G,4G Mobile networks
 - Backhaul is combination of fiber and point-to-point microwave links

Wi-Fi Networks

- Wi-Fi is a wireless networking technology
- ✤ Wi-Fi is a set of protocols (IEEE 802.11)
- Wi-Fi is the most common type of Wireless LAN
- ✤ Why Wi-Fi?
 - ➤ High mobility
 - Rapid connection setup
 - > Inexpensive
 - > Security
 - Easy installation
 - > Good reliability (less than wired)
- Limitations
 - > Radio interference issues
 - > Variations in the data rate/signal
 - ➤ Range

Enterpise Wi-Fi Network

Wi-Fi networks used in a business, organization, departments, academic institutes etc.

Why an Enterprise Wi-Fi Network?

- Scalability
 - > Topology, infrastructure capacity etc.
 - Extendability of the network
- Speed and performance
 - ➤ high speed, low latency and jitter
- Security
 - > Robust and diverse security protocols
- Mobility

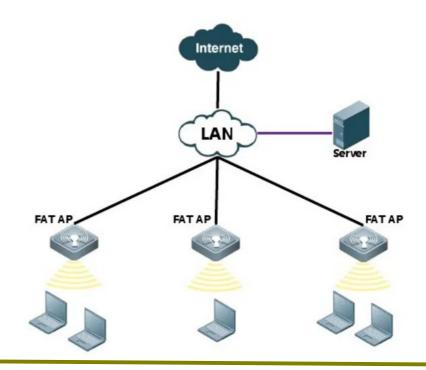
- > Roaming and portability of devices
- Reliability and uptime
 - Redundant and failover infrastructure setup
- Network management
 - Centralized configurations and monitoring

What consists of an Enterprise Wi-Fi Network?

- Enterprise grade routers and switches (L2/L3)
 - protocols supported, security control, manageability, quality and reliable hardware
- Firewalls

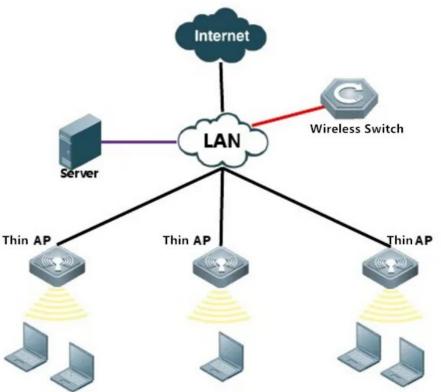
LEARN

- Access Points and Wi-Fi Controllers
- Servers and storage systems
- Fiber and Ethernet cabling infrastructure
- Server rooms/data centers
- Centrally hosted applications/softwares
- High capacity network/internet connectivity
- Redundant setup of equipment/cabling for high availability
- Technical support staff


Devices used in a Enterprise Wi-Fi Network

- Access Points device that allows other Wi-Fi devices to connect to a wired network or wireless network.
 - > 2 Types
 - Indoor AP
 - Usually omni-directional
 - Outdoor AP
 - Made for challenging environmental conditions
 - High transmit power
 - Could be directional
- Can be used in standalone, controller managed or cloud managed
- High speed connection support with bridging support (in mesh setup)
- PoE support and/or direct power support
- High security standards
- Ceiling and Wall mountable

Fit APs vs Fat APs


- Fat
 - > Can be used in a standalone mode (Connected to modem)
 - Have more features like firewall, Routing, DHCP, DNS, VPN access, ACLs etc
 - > Typically doesn't support roaming
 - > No centralized management

Fit APs vs Fat APs

- Fit
 - > Need a Controller to manage APs
 - Have reduced/removed functionalities like firewalling, Routing, DHCP, DNS, VPN access, VLAN support, ACLs etc
 - Supports roaming with
 - clustered setup
 - Centralized management

Devices used in a Wi-Fi Network - WLAN Controller

- Manages Access Points in bulk to maintain a single WLAN network.
- Brain of the WLAN network
- Manages the configurations, firmware upgrades, deployment of new APs centrally
- Scalable (add more APs)
- might support advanced functions IPS/IDS, Stateful firewall, VPN connectivity, Spectrum monitoring/analysis etc
- monitor and manage APs in an wireless network and allows clients to connect to the network.
- Enable clients to connect to a SSID and use it while roaming through the APs in the same Wi-Fi network
- Improved security through different authentication methods
- Self-configuring and self-healing capability Adapt RF power levels and channels by detecting interferences

Types of WLAN Controllers

- On-premises WLAN controller
- Cloud-based WLAN controller
- Embedded (Virtual) WLAN controller

Types of WLAN Controllers - On-premises

- Hardware-based
- Early type of the controller
- Located in the company/organization's datacenter
- Rely less on the internet connectivity
- Come with advanced features
- Failover setup
- Hardware based acceleration for encryption features
- Costly solution

Types of WLAN Controllers - Cloud-based

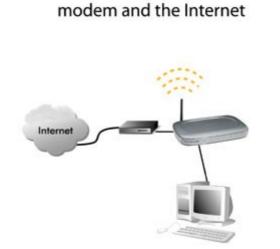
- Application/software on the cloud
- Easy remote management
- Single deployment for each sites
- No hardware limitations and scalable
 - > No max no of APs per controller limits
- Simplified deployment without complex controller clusters
- Regular automatic updates applied seamlessly
- Subscription based usage
- Reduced cost

Types of WLAN Controllers - Embedded

- controller built into the AP
- scalable and distributed architecture
- More suitable for small and starter companies/orgs
- Reduced hardware cost
- Many of HW controller features without any additional cost
- Maintenance difficulty and less reliability than HW based
- Inherited failover redundancy
- Lower latency with no controller bottleneck

Devices used in a Wi-Fi Network - Wi-Fi Repeater

- Amplify and rebroadcast the main router wifi signal
- Need to be placed within a good signal strength (60%)
- Pros
 - ≻ Cheaper
 - Easy to set up
- Cons
 - Low bandwidth
 - Signal degradation
 - > Network congestion
 - > Signal overlapping with main router


Devices used in a Wi-Fi Network - Wi-Fi Extender

- Connects to the main router through a cable
- Reliable connectivity
- Speed and performance
- Can extend to remote location through a cable
- Favorable than Repeater if cabling is possible



Devices used in a Wi-Fi Network - Wi-Fi Bridge

Connects different types of networks (Wi-Fi vs Ethernet)

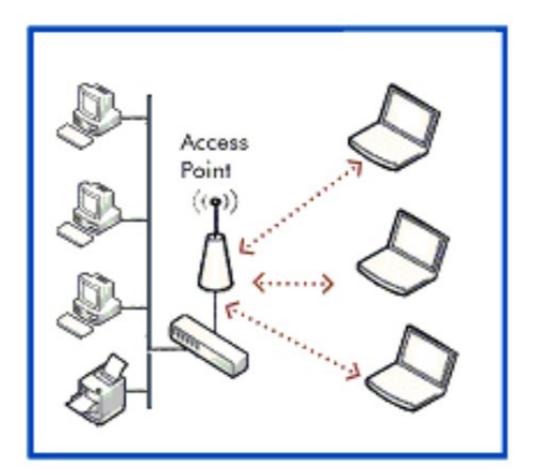
Wireless router attached to

Power over Ethernet (PoE)

- Both power and data over a single ethernet cable
- 3 standards
 - ➢ PoE (IEEE 802.3af) 15.4W
 - > PoE+ (IEEE 802.3at) 30W
 - > PoE++ (IEEE 802.3bt) 60/90W
- Power Sourcing Equipment (PSE)
 - Network switch with PoE support
 - ➢ PoE Injector
- Powered Device (PD)
 - > Access Point, VoIP phone, IP camera etc

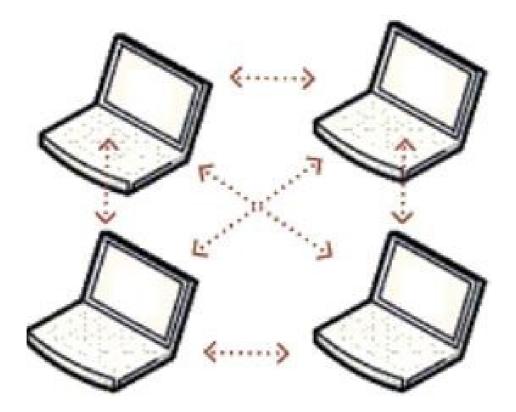
WLAN Modes

- Infrastructure-based vs Ad-hoc vs Wi-Fi direct
- Infrastructure-based network
 - Need a AP, Router or Hotspot to communicate between client devices
 - > High Mobility
- Ad-hoc network
 - Communication between clients to without an intermediate device
 - Communicate with each other through directly or through an another device/devices without having an AP, Router or Hotspot
 - > Peer-to-Peer

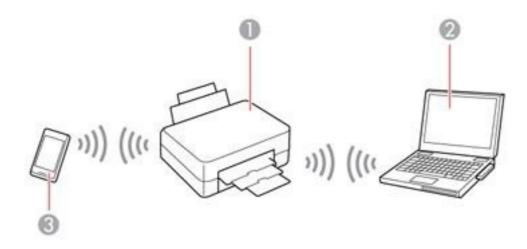

LEARN[®]

WLAN Modes

- Wi-Fi direct
 - Communication between two devices directly without having an intermediate device
 - Secure than Ad-hoc
 - > Peer-to-Peer
 - Same time can connect to the another Wi-Fi network


WLAN Modes - Infrastructure-based

Infrastructure mode



WLAN Modes - Ad-hoc

WLAN Modes - Wi-Fi direct

Wi-Fi Standards

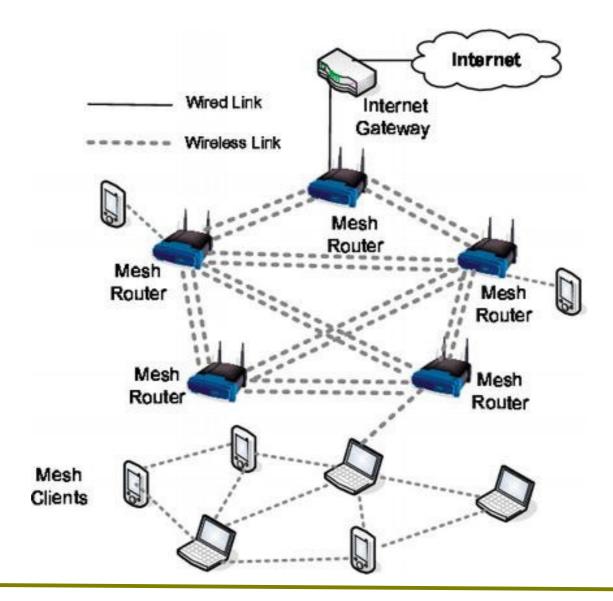
	V·T·E			
Generation	IEEE standard	Adopted	Maximum link rate (Mbit/s)	Radio frequency (GHz)
Wi-Fi 8	802.11bn	2028 ^[1]	100,000 ^[2]	2.4, 5, 6, 7, 42.5, 71 ^[3]
Wi-Fi 7	802.11be	2024	1376–46,120	2.4, 5, 6 ^[4]
Wi-Fi 6E	802.11ax	2020	574–9608 ^[5]	6 ^[a]
Wi-Fi 6	002.11ax	2019		2.4, 5
Wi-Fi 5	802.11ac	2014	433–6933	5 ^[b]
Wi-Fi 4	802.11n	2008	72–600	2.4, 5
(Wi-Fi 3)*	802.11g	2003	6–54	2.4
(Wi-Fi 2)*	802.11a	1999	0-04	5
(Wi-Fi 1)*	802.11b	1999	1–11	2.4
(Wi-Fi 0)*	802.11	1997	1–2	2.4

*Wi-Fi 0, 1, 2, and 3 are named by retroactive inference.

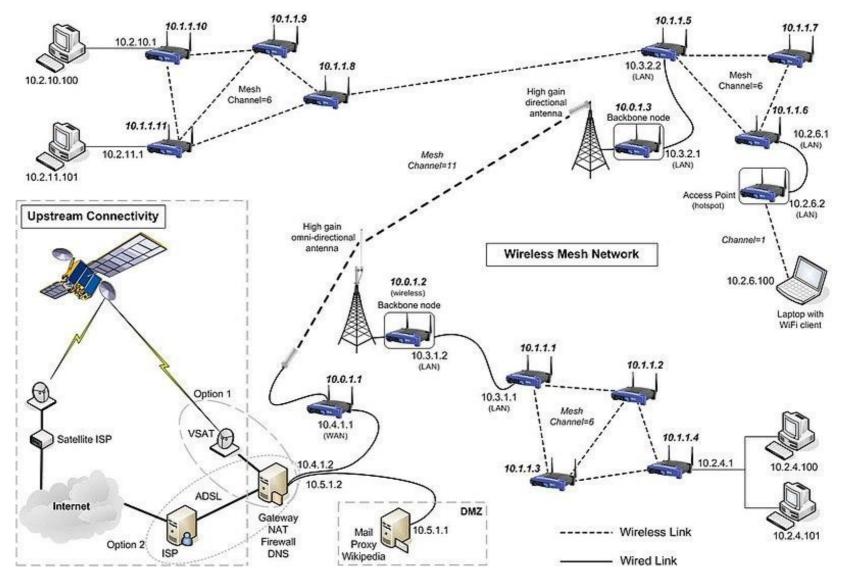
They do not exist in the official nomenclature.[6][7][8]

Wireless Security

- Unlike ethernet, the Wi-Fi signals transmitted over the air
- Need to encrypt passwords and data from client to the destination
- Wi-Fi security protocols, namely WEP, WPA, WPA2 and WPA3
- WEP Wired Equivalent Privacy (1997)
- WPA Wi-Fi Protected Access (2003)
- WPA2 Wi-Fi Protected Access v2 (2004)
- WPA3 Wi-Fi Protected Access v3 (2018)
- Two modes for each versions of WPA
 - > WPA-Personal,WPA2-Personal,WPA3-Personal
 - Password (PSK) is set for an SSID
 - appropriate for most home networks
 - > WPA-Enterprise,WPA2-Enterprise,WPA3-Enterprise
 - Require a RADIUS/TACACS server
 - Used in business/organizational environments


Wireless Security

	WEP	WPA	WPA2	WPA3
Release Year	1999	2003	2004	2018
Encryption Method	Rivest Clipher 4 (RC4)	Temporal Key Integrity Protocol(TKIP) with RC4	CCMP and Advanced Encryption Standard	Advanced Encryption Standard(AES)
Session Key Size	40-bit	128-bit	128-bit	128-bit(WPA3-Personal) 192-bit(WPA3-Enterprise)
Clipher Type	Stream	Stream	Block	Block
Data Integrity	CRC-32	Message Integrity Code	CBC-MAC	Secure Hash Algorithm
Key Management	Not provided	4-way handshaking mechanism	4-way handshaking mechanism	Simultaneous Authentication of Equals handshark
Authentication	WPE-Open WPE-Shared	Pre-Shared Key(PSK)& 802.1x with EAP variant	Pre-Shared Key(PSK)& 802.1x with EAP variant	Simultaneous Authentication of Equals(SAE)&802.1x with EAP variant



- A wireless mesh network (WMN) is a communications network made up of radio nodes organized in a mesh topology.
 - ➤ Nodes
 - Mesh routers: Wi-Fi routers, Access Points
 - Mesh clients: Client devices like laptops, mobiles etc.
- Extend the coverage
- Mostly the network is not a full mesh topology ie. each node is not connected to every other node in the mesh network but with only a subset of nodes.
- Nodes are decentralized comparing to the normal wireless network which are centralized around APs,Wi-Fi Routers
- Self-organized and self-configured to establish and maintain mesh topology among each others
- Every node keep routing topology information and relay each others network traffic

- General mesh networking
 - > Wired mesh networking
 - Optical Transport Networks
 - > Wireless mesh networking
 - Wi-Fi (802.11)
 - Bluetooth (802.15.1)
 - **Zigbee (802.15.4)**
 - Cellular

- Can exist three types of WMNs.
 - Infrastructure mesh networking
 - Form a mesh network among mesh routers only and create backbone infrastructure.
 - Clients connects to the mesh router through Wi-Fi or ethernet.
 - Client mesh networking
 - Form a mesh network among mesh clients only and make P2P communications with each other
 - Clients devices perform routing and self-configuration functions and relay network traffic.
 - > Hybrid mesh networking

 A combination of infrastructure and client mesh networking

Wireless Mesh Networking - Applications

- Home networking to extend the coverage
- Enterprise networking
- Transportations systems
- Health and medical systems
- Security and surveillance systems
- Connect laptops in the field in military operations
- IoT applications Smart electric meters
- Inter-communication between satellites

Thank You

