
LANKA EDUCATION AND RESEARCH NETWORK

An Introduction to Containers

Virtualization and Installation of On-Prem Video Conferencing Platform

• Containers are an abstraction at the app layer. •

• E.g.: Docker, Linux Containers (LXC)

CONTAINERS

• Less overhead

- Containers require less system resources than traditional or hardware virtual machine environments
because they don’t include operating system images.

• Increased portability

- Containers can run virtually anywhere, on Linux, Windows, and Mac operating systems; on virtual
machine or on physical servers; on a developer’s machine or in data centres on-premises; and of course,
in the public cloud.

• Greater efficiency

- allow you to use just the computing resources you need. This lets you run your applications efficiently.
More rapidly deployed, patched, or scaled.

• Better application development

- Containers support agile and DevOps efforts to accelerate development, test, and production cycles.
More secure.

WHY CONTAINERS

INTRODUCTION TO DOCKER

• Docker is an open platform for developing, shipping, and running
applications.

• Docker detach applications from their underlying infrastructure so one can
deliver software quickly.

• Docker Image - is a read-only template with instructions for creating a Docker
container

• A Docker container is a runnable instance of an image.

WHY DOCKER

• Community

- Docker Hub

• Isolation

-virtualize CPU, memory, storage, and network resources at the operating system level, providing
developers with a view of the OS logically isolated from other applications. Library separation.

• Lightweight

- share the machine’s OS system kernel and therefore do not require an OS per application, driving
higher server efficiencies and reducing server and licensing costs

• Simplicity

- Docker’s friendly, CLI-based workflow makes building, sharing, and running containerized
applications accessible to developers of all skill levels.

CONT’D

• Workflow

- Write the code.

- Build a container image.

- Push the image to the server or Docker Hub.

- Start the application, with the new image.

- Revise the (if necessary) and rerun the above workflow

DOCKER COMMANDS

DOCKER FILE
• Used to setup a Docker image

• A Dockerfile is a text document that contains all the commands a

• user could call on the command line to assemble an image.

• Dockerfile format

• The instruction is not case-sensitive. However, convention is for them to be
UPPERCASE to distinguish them from arguments more easily.

CONT’D
• Generally, a Dockerfile must begin with a FROM instruction.

• Commonly used instructions with formats
• FROM <parent Docker image name>
• RUN <command>
• CMD <command>

The main purpose of a CMD is to provide defaults for an executing container. RUN
actually runs a command and commits the result; CMD does not execute anything at
build time, but specifies the intended command for the image.

• COPY <src>... <dest>
• EXPOSE <port> [<port>/<protocol>...]
• VOLUME <["/data"]>

The VOLUME instruction creates a mount point with the specified name and marks it as
holding externally mounted volumes.

DOCKERFILE EXAMPLE

• Simple Dockerfile content

DOCKER IMAGE COMMANDS

DOCKER COMPOSE

• Compose is a tool for defining and running multi-container Docker applications.

• With Compose, you use a YAML file to configure your application’s services.

• Then, with a single command, you create and start all the services from your
configuration.

• Can install as a plugin

THANK YOU

