Lanka Education and Research Network

SNMP

Simple Network Management Protocol

27th November 2017

Senevi Herath

What is SNMP

SNMP

- Simple Network Management Protocol
 - Protocol for network monitoring and management
 - Structured protocol and structured information
 - For querying network device state and receiving notifications
 - Can be used to change state
 - Industry standard, hundreds of tools uses it
 - Supported on any decent network devices
 - Transport: UDP ports 161 and 162

Uses of SNMP

Uses

- Typical queries
 - Bytes In/Out on an interface, errors
 - CPU load
 - Uptime
 - Temperature or other vendor specific OIDs
 - snmpget -Os -c public -v 2c 192.248.1.1 system.sysName.0
 - snmpget -Os -c public -v 2c 192.248.1.1 ifOutOctets.1
- In case of hosts (servers)
 - Disk space
 - Installed software
 - Running process
 - Load average, etc
 - snmpget -Os -c public -v 2c 192.248.1.165 system.sysName.0
 - snmpget -Os -c public -v 2c 192.248.1.165 hrStorageDescr.34
 - snmpget -Os -c public -v 2c 192.248.1.165 hrStorageSize.34
 - snmpget -Os -c public -v 2c 192.248.1.165 hrStorageUsed.34

SNMP History

- v1 (1988) original specification
 - Historic
- v2 (1996) failed standard
 - Security, new data types, new operators
 - 64-bit counters, get-bulk, v2 notifications
 - View-based access control model (VACM) introduced
 - Historic, no current implementations left
- v2c (1996) De facto standard
 - v2 data types and operators
 - v1 security (simple community string model)
 - Historic
- v3 (1998) Robust security

SNMP roles

Manger

- It is the monitoring station, sometime known as the SNMP client
- SNMPv3 calls it the Command Generator and Notification Receiver.

Agent

- It is running on the equipment/server, sometimes know as the SNMP server
- SNMPv3 calls it the Command Responder and Notification Originator

How does SNMP work

- Basic operators
 - y get (manager → agent)
 - Query for a value
 - y getnext (manager → agent)
 - Get next value (e.g. list of values for a table)
 - y getresponse (agent → manager)
 - Response to get, getnext, or set, includes error returns
 - set (manager → agent)
 - Set a value, or perform an action
 - trap (agent → manager)
 - Spontaneous notification from equipment
 - Line down, temperature above the threshold

How does SNMP work

- Query/response based
 - Monitors generally uses get, getnext, getbulk
 - e.g. monitors: linux snmp-tools, nagios, cacti, etc
 - Change state uses set
 - Response is always a getresponse
 - getbulk requires v2c or v3
- Notification are delivered as traps
 - traps are unacknowledged
 - informs are acknowledged (v2c, v3)

The SNMP database

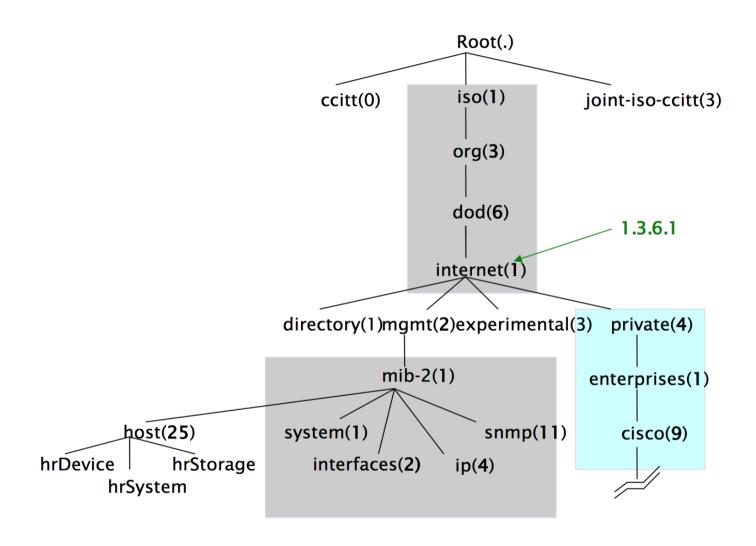
- Then information offered by a device is available in its Management Information Base (MIB)
 - SNMP uses Object Identifiers (OIDs) to organize this information
 - OIDs are keys to identifying each piece of data
 - OID are organized into a tree structure that is the MIB
 - MIB files documents parts of the MIB on a device

OID

- A unique key to select a particular item of data in the device
- The same piece of information is always found at the same OID. That's simple!.
 - e.g.
 - 1.3.6.1.2.1.1.3
- Allocated hierarchically in a tree to ensure uniqueness (similar to DNS)

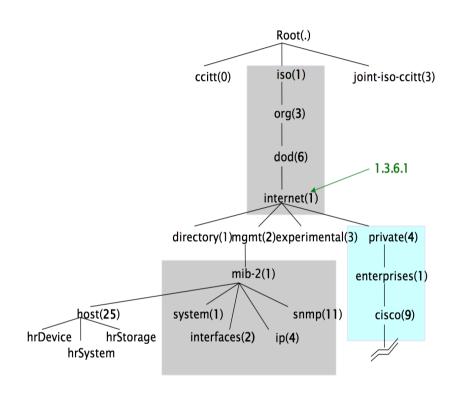
How does SNMP work

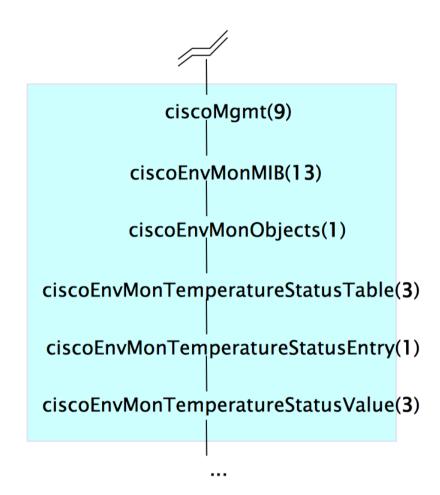
- Query/response based
 - Monitors generally uses get, getnext, getbulk
 - e.g. monitors: linux snmp-tools, nagios, cacti, etc
 - Change state uses set
 - Response is always a getresponse
 - getbulk requires v2c or v3
- Notification are delivered as traps
 - traps are unacknowledged
 - informs are acknowledged (v2c, v3)



OIDs and MIB files

- For example: user@learn.ac.lk
 - would have been something like
 - user@learn.enterprises.private.internet.dod.org.iso
 - user@99988.1.4.1.6.3.1
 - except that we reverse the ordering and putting iso(1) first
 - .1.3.6.1.4.1.99988.117.115.101.114 It is unique...
 - Read from left to right
 - OID components seperated by '.'
 - .1.3.6.1.4.1.9. ...
 - Each OID corresponds to a label
 - .1.3.6.1.2.1.1.5 => sysName
 - The complete path
 - .iso.org.dod.internet.mgmt.mib-2.system.sysName
 - How do we convert from OIDs to Lables (and vice versa)?
 - Use of MIB files!




The MIB Tree

The MIB Tree

Interesting parts of the MIB Tree

- The Internet MIB, .1.3.6.1, really only two branches of intersets
 - Standard MIBs
 - .1.3.6.1.2.1 = .iso.org.dod.internet.mgmnt.mib-2
 - Vendor-specific (proprietary) MIBs
 - .1.3.6.1.4.1. = .iso.org.dod.internet.private.enterprises

