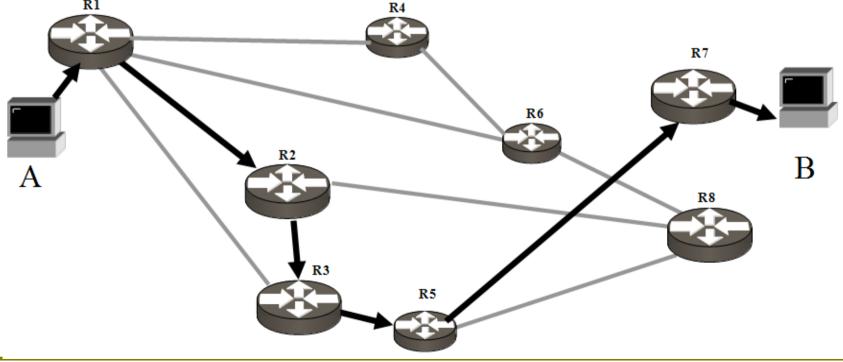
Lanka Education and Research Network

IP Routing

22nd May 2017 IT Center, University of Peradeniya


Dilum Samarasinhe (LEARN)

Overview

- Introduction
- Routing Table
- Route Types
- Static Routes
- Dynamic Routing
- Routing Protocols

Routing

- Every hosts on the Internet needs a way to get packets to other hosts outside it's own subnet
- Hosts That can move packets between subnets are called routers
- Packets can pass through many routers before reaching their destination

Routing Table

- All hosts have a routing table
- Routing table shows which networks are connected
- The help deciding how to forward packets to other networks
- Routing table consists of:
 - Network : Shows the network ID of the connected Network
 - Netmask : netmask of the above mentioned network
 - Gateway/Next Hop : It points to the gateway through which the network can be reached
 - Interface : Locally available interface is responsible for reaching the gateway
 - Metric : Cost of using the indicated route. Lower the cost more chance of choosing that route

Route Types

- Routing table entries are added in two ways
 - Manully added by a user
 - Dynamic routing using Routing Protocols
- Manually Added routes (Static Routes)
 - Default Route
- Dynamic Routing
 - Distance Vector Routing Protocols
 - Link State Routing Protocols

Static Routes

- Static Routing is a simplistic approach
- Most commonly used route is the default route
- Shortcomings
 - Cannot adapt to addition of new links or nodes
 - Cannot adapt to link or node failures
 - Cannot easily handle multiple paths to a destination
 - Does not scale to large networks

Dynamic Routing

- Distance Vector Routing Protocols
 - Listen to neighboring routes
 - Install all routes in routing table and the lowest hop count wins
 - Advertise all routes in table
 - Cannot scale
 - Cannot resolve routing loops quickly
 - RIP is a routing protocol that uses Distance Vector Algorithm

Dynamic Routing

- Link State Routing Protocols
 - Each link, the connected nodes and the metric is flooded to all routers
 - Each link up/down status change is incrementally flooded
 - Each router re-computes the routing table in parallel using the common link state database
 - Examples are OSPF and IS-IS

Routing Protocols

• RIP

- Stands for "Routing Information Protocol"
- RIPv1 is classful, and officially obsolete
- RIPv2 is classless
- Not widely used in the Internet industry
- OSPF
 - Stands for Open Shortest Path First
 - OSPF v2 is widely used
 - OSPF v3 includes extensions to support IPv6

Lanka Education and Research Network

Thank You

Dilum Samarasinghe/LEARN

Email: dilum@learn.ac.lk