Lanka Education and Research Network

Campus Network Basics

25-28 April 2022

Tuning up Campus Network – IT Center, University of Peradeniya

Dhammika Lalantha / LEARN

Network Design Goals

- Performance
 - Bandwidth
 - Throughput
 - Latency
 - Jitter
 - Packet loss
- Reliability and Resiliency
 - Service outages
 - Highly reliable and available network that can survive during any network component failure without any operator intervention

Network Design Goals

- Security
 - Guarantee of confidentiality, integrity and authenticity
 - Traffic isolation between the traffic of guests and internal staff.
- Manageability
 - Manageable devices
 - Find problems
- Scalability
 - Needs to be able to grow as needs grow

Network Devices

Hub

Switch

Network Devices

Router

Firewall

Router vs Layer 3 Switch

Attribute	Router	Layer 3 Switch		
Scope	WAN for Office, Data Center or Campus	LAN for Office, Data Center or Campus		
scope	environment	environment		
Key Functionality	Routes across different networks across WAN are	Routes across different subnets or VLANS on a		
Rey runctionanty	communicated and Routed by a Router	campus LAN		
MPLS and VPN	Router provides MPLS and VPN services like PPP	Does not support MPLS and VPN services		
Services	etc.			
Edge technologies	NAT firewalling tunneling IPSec	Netsupported		
support	NAT, mewaning, turnening, ir sec	Not supported.		
Size of routing	Considerably bigger to support multiple Route	Smaller Pouting table compared to Pouter		
table	entries.	Smaller Noutling table compared to Nouter		
Forwarding	Performed by Software	Forwarding is performed by specialized ASICs		
decision	renormed by Software	Forwarding is performed by specialized ASICs		
Example of	Cisco 3900 4000 Series ISB Bouters	Cisco 3650, 3560 and 6500 Series are examples of		
Routers	cisco 3900, 4000 series isk kouters	Layer 3 Switches.		
Interface Support	Support Ethernet ports (Eiber and Coppor) Also	As general case L3 Switches support Ethernet ports		
	support interfaces like SONT OC-N_T1/T2 etc.	(Copper and Fiber). Does not support SONET, OC-		
	support interfaces like SONT, OC-N, 11/15 etc.	N, T-1/T-3		
Throughout	Lower than Layer 3 Switches	High Throughput		
Switching Capacity	Lower than Layer 3 Switches	High Switching Capacity		
Cost	High cost	Low Cost		
Port Density	Low	High		

Source: medium.com

Layer 2 Switch vs Layer 3 Switch

Attribute	Layer 2 Switch	Layer 3 Switch
Basic function	Operate on layer 2 only (Switching only)	Operate on both layer 2 and layer 3 (Routing and Switching)
Switching speed	High speed switching	Lower than Layer 2 switch
Addressing used	Uses MAC addresses	Uses MAC and IP addresses

Source: medium.com

Twisted Pair Cables

Category	Cable construction	Bandwidth	Data rate	Max length	Application
Cat 3	UTP	16 MHz	10 Mbps	100m	Token Ring/ 10BASE-T Ethernet
Cat 4	UTP	20 MHz	16 Mbps	100m	Token Ring
Cat 5	UTP	100 MHz	100 Mbps	100m	100BASE- TX, 1000BASE-T
Cat 5e	UTP, F/UTP, U/FTP	100 MHz	100/1000 Mbps	100m	1000BASE- TX, 2.5GBASE-T

Twisted Pair Cables

Category	Cable construction	Bandwidth	Data rate	Max length	Application
Cat 6	UTP, F/UTP, U/FTP	250 MHz	10 Gbps	100m	5GBASE-T, 10GBASE-T
Cat 6A	UTP, F/UTP, U/FTP, S/FTP	500 MHz	10 Gbps	100m	5GBASE-T, 10GBASE-T
Cat 7	S/FTP, F/FTP	600 MHz	10 Gbps	100m	10BASE-T
Cat 7A	S/FTP, F/FTP	1 GHz	10 Gbps	100m	10BASE-T
Cat 8	U/FTP,F/UTP, S/FTP, F/FTP	2 GHz	25/40 Gbps	30m	25/40GBASE-T

Fiber Optic Cables

Design ation	Cable Type	Core Diamete r(um)	1Gb Ethernet Distance (m)	10Gb Ethernet Distance (m)	40Gb Ethernet Distance (m)	100Gb Ethernet Distance (m)
OM1	Multimode	62.5/125	275	33	Not supported	Not supported
OM2	Multimode	50/125	550	82	Not supported	Not supported
OM3	Multimode	50/125	550	300	100	100
OM4	Multimode	50/125	550	400	150	150
OM5	Multimode	50/125	550	400	150	150
OS1	Singlemode	9/125	2Km	2Km	Not recommende d	Not recommended
OS2	Singlemode	9/125	10Km	10Km	40Km	40Km

Campus Network Design rules

- Layered network design
- Minimize number of devices in any path
- Route near the Core, Switch at the Edges
- Provision central services near the Core
- Use DHCP centrally
- Separate DNS server duties

Layered Hierarchical Network Design

- A good network design is modular and hierarchical with a clear separation of functions
 - Core : resilient, few changes, few features, high link and high CPU capacity
 - Distribution: Aggregation, redundancy
 - Access: Port density, affordability, security features, many adds, moves and changes

Layered Network Design - Simple

Layered Network Design - Redundant

Minimize Number of Network Devices in the Path

• Build start networks (Hub and spoke)

• Avoid daisy-chained networks (cascaded)

Star Topology

Route near the Core, Switch at the Edges

- The hub at the campus level (core network) is often a Layer 3 device.
- Best practices to route at the core
 - This segments network into independent subnets
 - Limits broadcasts

In-Building Edge Networks

Make every building look like this

Edge Networks

- Start with small
- Build Edge network incrementally as you have demand and money

Edge networks

 Then as you need to add machines to the network, add a network rack and a switch

Edge Networks

• Keep adding racks and switches

Edge Networks

Avoid daisy-chaining and connecting building together

Core Network

- At the core network you must route not switch
- You may use a Router or Layer 3 switch
- Routers isolate networks

Where to put servers

- Should not be in the same subnet as users
- Should be near the core router/L3
- Should have good power and air conditioning

Where to put Firewalls

- Often placed in-line
- Typical design is below

Science DMZ

- Optimized for high performance scientific applications
- Designed to hand high volume data transfers
- Going through stateful firewall would cause performance limit

Border Router

- Connect campus to outside world
- Connect to multiple ISPs, to your REN
- Some do firewalling, NAT here
 - Separate firewall is recommended for above

Putting it all Together

Wireless in Campus

Authentication for Wireless Networks

Wireless Network with Controller

Wireless Network with Virtual Controller

Backup VPLS Link – Configuration 1

Backup VPLS Link – Configuration 2

DHCP server

- A central DHCP server
- Need DHCP relay form each subnet
- As you grow, add another server and run as a failover pair

DNS

- Must be reliable
 - No DNS = No Service
- A Central DNS server
- At least two servers for Authoritative and Recursive servers
- Authoritative vs Recursive

Server Function	Information	Target audience
Authoritative	Your domains	The Internet
Recursive	All other domains	Your users

Lanka Education and Research Network

Thank You

Dhammika Lalantha/LEARN

Email: lalantha@learn.ac.lk